

M.Tech in Data Sciences

Program Outcomes (POs)

PO1: An ability to independently carry out research / investigation and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report / document.

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor.

Program Specific Outcomes (PSO)

PSO1: Possess broad insight, understanding and intuition of the whole process line of extracting

knowledge from data and can use this knowledge for data management, analysis, predicting and

building models.

PSO2: Apply and analyse knowledge about algorithms for statistical analysis, machine learning, data

extraction in new areas in data science.

Course out comes Cos

Batch: 2019-2021

Semester	Course Code	Course Name	Course Outcomes (COs)		
Semester	Course Code	Course Maine	CO1: Recognise and identify the		
	18MTDS101	DISCRETE MATHEMATICS AND LINEAR ALGEBRA	importance functions and algorithms and to apply permutations and combinations in probability concepts in data science. CO2: Demonstrate graph theory in data mining techniques. CO3: Employ consistent and inconsistent systems of equations by the row echelon form of the augmented matrix and to understand the importance of Euclidean space in grouping of variables. CO4: Describe the importance of Eigen values and Eigen vectors in data		
	18MTDS102	ADVANCES IN DATA BASE MANAGEMENT SYSTEMS	dimension reduction techniques CO1: Demonstrate the concept of SQL CO2: Demonstrate different security management of SQL Database CO3: Employ different ways of SQL statements and executions CO4: Differentiate conditional statement for Aggregating and grouping data. CO5: Use the different ways to extract data from different tables in a database		
	18MTDS131	R PROGRAMMING LANGUAGE	CO1: Use the core programming concepts of R language for solving problems. CO2:Demonstrate the uniqueness in R programming concepts and its speed to other statistical programming languages. CO3: Construct programs to show different options in I/O operations in R programming. CO4: Interpret the importance of simulation concepts in R for cross validation of the data mining techniques. CO5: Examine the basic concepts of statistical functions in R for the analysis.		
	18MTDS132	PYTHON FOR DATA SCIENCE	CO1:Use the core programming concepts of Python Programming Language to solve problems. CO2:Demonstrate the Looping and		

condition statements in Python Programming Language CO3:Illustrate the different options in Data Management in Python Programming Language. CO4:Employ the data transformation technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data CO3: Illustrate the importance of
CO3:Illustrate the different options in Data Management in Python Programming Language. CO4:Employ the data transformation technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
Data Management in Python Programming Language. CO4:Employ the data transformation technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
Programming Language. CO4:Employ the data transformation technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
CO4:Employ the data transformation technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
technique and its need in Python Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
Programming Language CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
CO5: Illustrate advanced statistical methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
methods in Python Programming environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
environment. CO1: Employ Loading data and present them pictorially CO2: Employ the Data wrangling technique for the given data
present them pictorially CO2: Employ the Data wrangling technique for the given data
present them pictorially CO2: Employ the Data wrangling technique for the given data
CO2: Employ the Data wrangling technique for the given data
technique for the given data
VISUALIZATION Visualization in time series
18MTDS133 TECHNIQUES environments.
CO4: Demonstrate the importance of
vector representation in data science.
CO5: Interpret the customization for
better representation of graphical
results.
CO1: Demonstrate the basic principles
of AI
CO2: Illustrate the different concepts of
ARTIFICIAL machine thinking
18MTDS141 INTELLIGENCE CO3: Employ the modern concept in Al
CO4: Use the concept of problem
solving and thus to improve the
problem-solving skill
CO1: Employ the Key concepts of
Internet of things and Internet of
Everything
CO2: Explain the architecture view and
18MTDS142 INTERNET OF strategy of deploying things using cloud
THINGS CO3: Report how cloud plays an
important role in IoT Infrastructure
CO4: Classify the real time applications
and future scope related to it.
CO1: Analyse the Cloud computing
setup with its vulnerabilities and
applications using different
architectures.
CO2: Design different workflows
according to requirements and apply
CLOUD man reduce programming model
18MTDS143 COMPUTING CO:3 Apply and design suitable
Virtualization concept, Cloud Resource
Management and design scheduling
algorithms
CO4: Create combinatorial auctions for
cloud resources and design scheduling

	T	T	100-1	
			CO5: Assess cloud Storage systems and Cloud security, the risks involved,	
			its impact and develop cloud	
			•	
			application.	
			CO1: Describe the writing skills to	
			prepare a well-structured research	
			paper or report.	
			CO2: Demonstrate the key skills	
			needed while writing literature review.	
		Research	CO3: Illustrate the principles, scope, aim of research ethics and ethical	
	18MTRM01	Methodology &	issues.	
		IPR	CO4: Demonstrate the process of	
		II K	patenting and development.	
			CO5: Dramatize the scope of Patent	
			Rights, Licensing and transfer of	
			technology.	
			CO 6: Illustrate the new developments	
			on IPR.	
			CO1: Demonstrate the different	
			estimation methods in statistical inference.	
			CO2: Illustrate the importance of	
			maximum likelihood estimator in the	
		STATISTICAL	parameter estimation in	
	101170001	INFERENCE	continuous probability distributions.	
	18MTDS201	STATISTICAL INFERENCE	CO3: Interpret the importance of	
			Neyman-Pearson lemma in deciding	
			the critical region for the	
			hypothesis testing procedure	
			CO4: Differentiate parametric and non-	
			parametric tests for large and small samples.	
			CO1: Demonstrate the different	
	AOMTDOOO		machine learning techniques and its	
			application.	
l II			CO2: Interpret the importance of simple	
			linear regression in predicting new	
			observations.	
		MACHINE	CO3: Illustrate the importance of	
	18MTDS202	LEARNING	assumptions in estimating the	
			parameters in simple linear regression analysis.	
			CO4: Employ multiple linear regression	
		NATURAL LANGUAGE PROCESSING	in predictive techniques and its	
			assumptions.	
			CO5: Differentiate Logistic regression	
			over decision tree and random forest.	
	18MTDS231		CO1: Demonstrate the basic concepts	
			of recommender systems in data	
			science.	
			CO2: Compare the different data	
	<u>j</u>	<u> </u>	mining techniques used in	

			recommender system.	
			CO3: Differentiate content based and	
			neighbourhood-based recommender	
			system.	
			CO4: Examine different algorithms used for Context-Aware Recommender	
			Systems CO1: Demonstrate the basic concepts	
		ARTIFICIAL NEURAL NETWORK	of neural networks and its components.	
			CO2: Examine neural network learning	
			and adaption techniques	
	18MTDS232		CO:3Sketch bivariate statistical graphs	
			for the better representation and	
			interpretation.	
			CO4: Use the various advanced graphs	
			in Exploratory Data Analysis.	
			CO1: Discuss Basic Image Processing	
			Techniques for Solving Real Problems.	
			CO2: Implement Image Process and	
			Analysis Algorithms.	
	18MTDS241		CO3: Create Practical Solutions to A	
		DIGITAL IMAGE	Range Of Common Image Processing	
		PROCESSING	Problems And To	
		TROCESSING	Critically Assess The Results Of Their	
			Solutions, Including Shortcomings	
			CO4: Demonstrate aknowledge	
			ofabroad range of Fundamental Image	
			Processing and Image Analysis	
			Techniques and Concepts	
			CO1: Discuss the important terminologies and analytics techniques	
			in social media analytics	
			CO2: Examine the twitter data and	
			conclude the important finding and	
	18MTDS242	SOCIAL MEDIA	insights of the society thought on	
		ANALYTICS	particular issues.	
			CO3: Use the Instagram profile and	
			find out the interesting insights.	
			CO 4: Employ the different techniques	
			for Social Media Analytics applications	
	18MTDS243		CO1: Discuss the different Areas	
			Where Pattern Recognition Can Offer a	
			Solution	
			CO2: Compare Strength and	
		PATTERN RECOGNITION	Limitations of Some Techniques for	
			Classification, Regression and Density Estimation Problems	
			CO3: Illustrate supervised learning	
			algorithms used in pattern recognition	
			research.	
			CO4: Demonstrate Bayes classifier,	
			linear discriminant analysis for solving	
			real time problems	
	18MTDS202L	MACHINE	CO1: Employ the simple linear	

	T	I MADAUNIS : :=		
		LEARNING LAB	regression technique.	
			CO2: Use the multiple linear regression	
			technique for various applications.	
			CO3: Identify the most significant	
			predictors to develop the better fit	
			model.	
			CO4: Assess the general linear model	
			assumption to obtain the best model for	
			the given data.	
			CO5: Differentiate between the	
			parametric and non-parametric	
			supervised learning techniques.	
			CO1: Choose the different data pre-	
			processing techniques for removing the	
			space and punctuation marks, brackets from the text data.	
	18MTDS231L	NATUDAU		
	101V11D3231L	NATURAL LANGUAGE	CO2: Employ the machine learning model on text data and interpret them.	
		PROCESSING	CO3: Choose the visualization	
		LAB	technique to represent and understand	
		LAD	the data efficiently.	
			CO4: Examine different algorithms	
			used for Context-Aware Recommender	
			Systems	
	18MTDS232L		CO1: To create data frame, lists, array,	
			matrices of raw input of data.	
			CO2: Choose the statistical method to	
			measure the given data.	
		EXPLORATORY	CO3: Use the various advanced graphs	
		DATA ANALYSIS LAB	in Exploratory Data Analysis.	
			CO4: Select the suitable data	
			visualisation technique for the graphical	
			representation of the data.	
	18MTDS233L		CO1: Illustrate the use of neural	
			network model to perform the training	
		ARTIFICIAL	and testing on the given data.	
		NEURAL NETWORK LAB	CO2: Use the python programming to	
			develop Neural Network Model.	
			CO3: Differentiate between the	
			different types of Neural Network	
			Model.	
	18MTDS311		CO1: Discuss NoSQL databases	
Ш			CO2: Discuss the basic principles and	
			design criteria of NoSQL databases	
		NOSQL DATABASES	CO3: Illustrate the comparisons among different types of NoSQL databases	
			CO4: Distinguish various use cases for	
			different NoSQL databases	
			CO5: Assess data storage and	
			processing techniques	
		BIG DATA	CO1: Discuss the advanced analytics	
		ANALYTICS ON	concept of Big Data use cases	
	18MTDS312	CLOUD	CO2: Contrast different types of Cloud	
			Services	
	•			

_	ı	1	
			CO3: Demonstrate about Deploying
			cloud over Big Data
			CO4: Compare different available
			services available for Cloud
			Deployment
		DATA ANALYTICS USING	CO1: Discuss Cassandra concepts and
			the architecture
			CO2: Differentiate RDBMS and
			Cassandra
			CO3: Demonstratekey features of
			NoSQL database and CAP theorem
	18MTDS313		CO4: simplify Install, configure and
			monitor Cassandra
		CASSANDRA	CO5: Demonstrate Cluster
			management, Indexing and Data
			Modelling in Cassandra
			CO6: Employ Cassandra Query
			Language
			CO1: Demonstrate knowledge of data
			analytics.
			CO2: Use technical skills in predicative
			to support business decision-making
	18MTOE321	BUSINESS	CO3: Use technical skills in
	TOWTOLSZI	ANALYTICS	prescriptivemodelling to support
			business decision-making
			CO4 :Simplify data into clear,
			actionable insights
			CO1: Demonstrate knowledge of
			industrial safety
	18MTOE322 18MTOE323	INDUSTRIAL SAFETY	CO2: Use technical skills in maintaining
			equipment's, building's, cleaning safety
			CO3: Take actionable insights
		COST	CO1: Demonstrate cost and time
		MANAGEMENT	managing
		OF	CO2: Use soft and technical tools in
		ENGINEERING	designing the project
			CO3: Take actionable insights
		PROJECTS	<u> </u>
			CO1: Demonstrate a depth of
			knowledge of Computer Science Engineering
			CO2: Undertake problem identification,
			formulation and solution
IV	18MTCSE41 a	Project Work and Dissertation	CO3: Complete an independent
			research project, resulting in at least a
			thesis publication, and research
			outputs in terms of publications in high
			impact factor journals, conference
			proceedings, and patents
			CO4: Demonstrate knowledge of
			contemporary issues in their chosen
			field of research.
			CO5: Demonstrate an ability to present
			and defend their research work to a
			panel of experts.